## [1] General Description

The AMI204 is a magnetic sensor for use in electronic compasses that integrates two perpendicularly positioned Magneto-Impedance sensors with their controller IC in a single small package. The AMI204 outputs linear voltages corresponding to the magnetic field strength in the direction of each of the two sensors.

## [2] Block Diagram



#### [3] Terminal Description

| Name | Pin # | I / O  | Description                                         | Reference                  |
|------|-------|--------|-----------------------------------------------------|----------------------------|
| VDD  | 3     | Power  | Power input $(+2.60 \text{ V to } +3.60 \text{ V})$ | -                          |
| GND1 | 1     | Power  | Power ground                                        | -                          |
| OUT  | 5     | Output | Linear DC output proportional to magnetic fields    | -                          |
| CS   | 2     | Input  | Chip Standby                                        | "L" or open = Shut down.   |
| XYin | 4     | Input  | X axis / Y axis output switching                    | "H" = X axis, "L" = Y axis |
| GND2 | 6     | Power  | Power ground                                        | -                          |

| •         | I ] IISSOIGUU IIIGHHHHH | ,~     |                  |      |  |
|-----------|-------------------------|--------|------------------|------|--|
| Parameter |                         | Symbol | Ratings          | Unit |  |
|           | Supply Voltage          | VDD    | -0.3 to +6.5     | V    |  |
|           | Storage Temperature     | Tstg   | -40 to +125      | °C   |  |
|           | Input Voltage           | VIN    | -0.3V to VDD+0.3 | V    |  |

#### [4] Absolute Maximum Ratings

#### [5] Recommended Operating Conditions

| Parameter             | Symbol | Min  | Тур  | Max  | Unit |  |  |
|-----------------------|--------|------|------|------|------|--|--|
| Supply Voltage        | Vdd    | 2.60 | 3.00 | 3.60 | V    |  |  |
| Operation Temperature | Topr   | -20  |      | +85  | °C   |  |  |

## [6] Electrical Characteristics

(Operating Conditions: Ta = +25 °C; VDD = +3.00 V;  $10\mu$ F ceramic capacitor between VDD and GND1)

| Parameter                   | Symbol          | Conditions                        | Min        | Тур | Max        | Unit |
|-----------------------------|-----------------|-----------------------------------|------------|-----|------------|------|
| Output Voltage              | V <sub>01</sub> | $I_{O1} = +10 \ \mu A, +1.0 \ mT$ | 2.7        |     |            | V    |
| Output Voltage              | V <sub>O2</sub> | $I_{O2} = -10 \ \mu A, -1.0 \ mT$ |            |     | 0.03       | V    |
| Derror Complex Compared     | I DD1           | CS= "H"                           |            | 2.3 | 3.0        | mA   |
| Power Supply Current        | I DD2           | CS= open, XYin = open             |            |     | 1          | μA   |
| High Level Voltage<br>Input | VH              | For XY in and CS                  | 80%<br>VDD |     |            | V    |
| Low Level Voltage<br>Input  | VL              | For XY in and CS                  |            |     | 20%<br>VDD | V    |
| Input Resistance            | RIN             | XYin to GND1, CS to GND1          |            | 2   |            | Mohm |

## [7] Magnetic Characteristics

(Operating Conditions: Ta = +25 °C; VDD = +3.00 V;  $10\mu$ F ceramic capacitor between VDD and GND1)

| Parameter                              | Symbol | Conditions              | Min  | Тур  | Max  | Unit         |
|----------------------------------------|--------|-------------------------|------|------|------|--------------|
| Dynamic Range                          | Rm     | CS = H                  | ±0.2 |      |      | mT           |
| Linearity                              | Lin    | CS = H, within +/-0.2mT |      | 1.6  |      | %FS          |
| Output Offset Voltage<br>at Zero Gauss | Vofs   | CS = H                  | 800  | 1350 | 1900 | mV           |
| Sensitivity                            | deltaV | CS = H                  | 1.6  | 2.4  | 3.8  | $mV/_{\mu}T$ |
| Frequency Range of<br>Magnetic field   | Fr     | CS = H                  |      |      | 1    | kHz          |

## [8] Test Circuit



# [9] Timing Chart

9-1. OUT pin



| Parameter                 | Symbol | Min | Max | Unit |
|---------------------------|--------|-----|-----|------|
| CS to active output delay | tOD    | -   | 1.0 | ms   |
| XYin to OUT switch delay  | tXYD   | -   | 1.0 | ms   |
| Output hold time          | tOH    | -   | 0   | ns   |

9-2. Power Supply Current for MI element



| Parameter            | Symbol | Conditions | Min | Тур  | Max | Unit |
|----------------------|--------|------------|-----|------|-----|------|
| Sensor current time  | tMI    |            | -   | 40   | -   | ns   |
| Sensor current       | Imi    | VDD=+3.00V | -   | 200  | -   | mA   |
| Sensor current cycle | tCYC   |            | -   | 5000 | -   | ns   |

## [10] Dimensions and Marking Layout



#### Aichi Steel Corporation

|     |                              | Test Conditions                                                        | Prepara- |            |                                                                                      |  |
|-----|------------------------------|------------------------------------------------------------------------|----------|------------|--------------------------------------------------------------------------------------|--|
| No. | Test Item                    | [based on EIAJ ED-4701]                                                | tion     | Duration   | Judgment                                                                             |  |
| 1   | High temperature storage     | Ta=+125°C                                                              |          | 1000 hours | Sat                                                                                  |  |
| 2   | Low temperature storage      | $Ta = -55^{\circ}C$                                                    |          | 1000 hours | isfie<br>l[7]                                                                        |  |
| 3   | Temperature humidity storage | Ta=+85°C, RH= 85%                                                      | I + II   | 1000 hours | s [6]<br>Mag                                                                         |  |
| 4   | High temperature bias        | Ta=+125°C, VDD=+3.6V                                                   |          | 1000 hours | Ele<br>gneti                                                                         |  |
| 5   | Temperature humidity bias    | Ta=+85°C, RH=85%, VDD=+3.6V                                            | I + II   | 1000 hours | c Ch                                                                                 |  |
| 6   | Temperature cycle (air)      | $-40^{\circ}C \leftrightarrow +125^{\circ}C$<br>(30min-5min-30min)     | I + II   | 100 cycles | al Cha<br>aracter                                                                    |  |
| 7   | Thermal shock (liquid)       | $-40^{\circ}C \leftrightarrow +125^{\circ}C$<br>(5min-10s-5min)        | I + II   | 100 cycles | acteris<br>istics a                                                                  |  |
| 8   | USPCT                        | Ta=+125°C, RH=85%, $2 \times 10^{5}$ Pa                                | I + II   | 100 hours  | tics<br>fter te                                                                      |  |
| 9   | Solder heat resistance       | Infrared reflow (See next page: high temp reflow peak less than 260°C) | Ι        | 2 times    | sting.                                                                               |  |
| 10  | ESD sensitivity (1)          | $C=200pF$ , $R=0$ ohm, $\pm 150V$                                      |          | 5 times    |                                                                                      |  |
|     | ESD sensitivity (2)          | C= 100pF , R= 1.5 kohm, ±1kV                                           |          | 3 times    |                                                                                      |  |
| 11  | Latch up                     | C= 200pF, R= 0 ohm, ±150V                                              |          | 1 time     |                                                                                      |  |
| 12  | Solderability                | Ta=+235°C                                                              | III      | 3 seconds  | Covered with<br>solder more than<br>95% of the<br>dipped portion of<br>the terminal. |  |

#### [11] Environmental and Mechanical Characteristics

Preparation (based on EIAJ ED4701-2 B101A)

The following preparations, related to moisture during storage and heat stress during mounting, were carried out prior to the abovementioned test items as noted in the preparation column.

I. Saturation humidification treatment

- II. IR Reflow (twice)
- III. Steam aging (4 hours)

IR Reflow heat conditions



#### [12] Notes

- This device is made with C-MOS IC. Please take precautions to prevent damage due to electrostatic discharge.
- 2) We recommend placing a capacitor ( the capacity is more than  $10 \ \mu\text{F}$  ) between VDD and GND1 to obtain stable operation.
- 3) The wiring pattern to VDD and GND1 should be as wide as possible in order to reduce high frequency impedance.
- 4) We recommend placing a RC or LC lowpass filter between OUT and GND1 to reduce output ripple voltage.
- 5) Storage (Moisture Proof Packaging)
  - 1 Please do no leave the device in the following environments:
    - \* High temperature and high humidity
    - \* Places with direct sun light
    - \* Places with extreme temperature changes
    - \* Dusty places
    - \* In corrosive gas
  - ② Recommended storage temperature and humidity:
    - \* +5°C $\sim$ +30°C, below 70%RH, please use device within one year.
- 6) Usage after Opening the Moisture Proofed Packaging
  - (1) After opening the moisture proof packaging, please store device in a temperature range of  $+5^{\circ}$ C  $\sim$ +30°C and humidity conditions below 70% RH. Apply device within 7 days. However, we recommend keeping the device in a moisture proof storage ( $+5^{\circ}$ C  $\sim$ +30°C,

below 30%RH).

2 In case 7 days have exceeded after opening, please keep in a moisture proof storage

(+5°C $\sim$ +30°C, below 30%RH). Apply device within 14 days.

③ However, we recommend using the device directly after the first opening.